
  

Graph Theory
Part One



  

Outline for Today

● Graphs and Digraphs
● Two fundamental mathematical structures.

● Graphs Meet FOL
● Building visual intuitions.

● Independent Sets and Vertex Covers
● Two structures in graphs.



  

Graphs and Digraphs
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Chemical Bonds
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What's in Common

● Each of these structures consists of
● a collection of objects and
● links between those objects.

● Goal: find a general framework for 
describing these objects and their 
properties.



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.
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A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or 
vertices) connected by edges (or arcs)

Edges



  

Some graphs are directed.
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Some graphs are undirected.



  

Graphs and Digraphs

● An undirected graph is one where edges 
link nodes, with no endpoint preferred over 
the other.

● A directed graph (or digraph) is one where 
edges have an associated direction.

● Unless specified otherwise:

  ☞ “Graph” means “undirected graph”  ☜



  

Formalizing Graphs

● An undirected graph is an ordered pair 
G = (V, E), where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of 

nodes drawn from V.
● An unordered pair is a set with cardinality two.

● We won’t use them in this class, but a directed 
graph (or digraph) is an ordered pair G = 
(V, E), where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are ordered pairs of 

nodes drawn from V.



  

● An unordered pair is a set {a, b} of two elements a ≠ b.
● An undirected graph is an ordered pair G = (V, E), where

● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes drawn from V.

● An unordered pair is a set {a, b} of two elements a ≠ b.
● An undirected graph is an ordered pair G = (V, E), where

● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes drawn from V.
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Self-Loops

● An edge from a node to itself is called a self-loop.
● In (undirected) graphs, self-loops are generally 

not allowed.
● Can you see how this follows from the definition?

● In digraphs, self-loops are generally allowed 
unless specified otherwise.

✓×



  

The Great Graph Gallery



  

Is this formula true about this graph?
 

∀u ∈ V. ∃v ∈ V. {u, v} ∈ E

+ ≈

⬠☜×

○△

꩜

□
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Let’s look at the negation!
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Let’s look at the negation!
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Independent Sets and Vertex Covers



  

Two Motivating Problems



  

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.
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Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.
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  Choose at least one endpoint of each edge.



  

Vertex Covers

● Let G = (V, E) be an undirected graph. A vertex 
cover of G is a set C ⊆ V such that the following 
statement is true:

∀x ∈ V. ∀y ∈ V. ({x, y} ∈ E → (x ∈ C ∨ y ∈ C))

(“Every edge has at least one endpoint in C.”)
● Intuitively speaking, a vertex cover is a set formed 

by picking at least one endpoint of each edge in the 
graph.

● Vertex covers have applications to placing 
streetlights/benches/security guards, as well as in 
gene sequencing, machine learning, and 
combinatorics.



  

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.
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Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.



  

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.



  Choose a set of nodes, no two of which are adjacent.



  

Independent Sets

● If G = (V, E) is an (undirected) graph, 
then an independent set in G is a set 
I ⊆ V such that

∀u ∈ I. ∀v ∈ I. {u, v} ∉ E.

(“No two nodes in I are adjacent.”)
● Independent sets have applications to 

resource optimization, conflict 
minimization, error-correcting codes, 
cryptography, and more.



  

Constraint Optimization with 
Independent Set and

Vertex Cover



  

What is the smallest Independent Set for this graph?

∀u ∈ I. ∀v ∈ I. {u, v} ∉ E.

(“No two nodes in I are adjacent.”)



  

What is the largest Vertex Cover for this graph?

∀x ∈ V. ∀y ∈ V. ({x, y} ∈ E → (x ∈ C ∨ y ∈ C))

(“Every edge has at least one endpoint in C.”)



  

What is the largest Independent Set for this graph?
What is the smallest Vertex Cover for this graph?



  

A Connection



  Independent sets and vertex covers are related.
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Theorem: Let G = (V, E) be a graph and
let C ⊆ V be a set. Then C is a vertex cover of G if

and only if V – C is an independent set in G.

+

+

꩜ +

꩜ +

+

+ ꩜

꩜

꩜

꩜

+

■ What’s special about
■ the (꩜) nodes?

■ What’s special about
■ the (+) nodes?

■ What’s special about
■ the (꩜) nodes?

■ What’s special about
■ the (+) nodes?



  

Theorem: Let G = (V, E) be a graph and
let C ⊆ V be a set. Then C is a vertex cover of G if

and only if V – C is an independent set in G.



  

Theorem: Let G = (V, E) be a graph and
let C ⊆ V be a set. Then C is a vertex cover of G if

and only if V – C is an independent set in G.

How do we prove a 
biconditional? 
Separately prove the 
forward and reverse 
directions of implication.
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Theorem: Let G = (V, E) be a graph and
let C ⊆ V be a set. Then C is a vertex cover of G if

and only if V – C is an independent set in G.

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a set. 
If C is a vertex cover of G, then V – C is an independent set of G.

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a set. 
If V – C is an independent set of G, then C is a vertex cover of G.
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It turns out Lemma 2 is 
easier to prove in its 
contrapositive form.

It turns out Lemma 2 is 
easier to prove in its 
contrapositive form.



  

∀x ∈ V – C.

    ∀y ∈ V – C.

        {x, y} ∉ E.

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be 
a set. If C is a vertex cover of G, then

V – C is an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a vertex cover of G.

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E →
    u ∈ C   ∨   v ∈ C
)

V – C is an independent set in G.
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Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■
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Theorem: Let G = (V, E) be a graph and
let C ⊆ V be a set. Then C is a vertex cover of G if

and only if V – C is an independent set in G.
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If C is a vertex cover of G, then V – C is an independent set of G.
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If C is not a vertex cover of G, then

V – C is not an independent set in G.

To proceed, we need to 
take the negations of the 
FOL definitions of vertex 
cover and independent set.

To proceed, we need to 
take the negations of the 
FOL definitions of vertex 
cover and independent set.

Lemma 1: done!
Now Lemma 2.

Lemma 1: done!
Now Lemma 2.



  

Taking Negations

● What is the negation of this statement, 
which says “C is a vertex cover?”

● This says “there is an edge where both 
endpoints aren’t in C.”

∀u ∈ C. ∀v ∈ C. ({u, v} ∈ E → 
    u ∈ C    ∨    v ∈ C
)
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Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be 
a set. If C is not a vertex cover of G, then

V – C is not an independent set in G.
What We’re Assuming What We Need To Show
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Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G. 

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■
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Recap for Today

● A graph is a structure for representing items 
that may be linked together. Digraphs 
represent that same idea, but with a 
directionality on the links.

● Graphs can’t have self-loops; digraphs can.
● Vertex covers and independent sets are 

useful tools for modeling problems with 
graphs.

● The complement of a vertex cover is an 
independent set, and vice-versa.



  

Next Time

● Paths and Trails
● Walking from one point to another.

● Indegrees and Outdegrees
● Counting how many neighbors you have, in 

the directed case.
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